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Abstract In this paper, we report on the nickel oxide (NiO)
thin films potentiostatically electrodeposited onto indium-
doped tin oxide-coated glass substrates by using two types
of organic surfactants: (1) non-ionic: polyethylene glycol
(PEG), polyvinylpyrrolidone (PVP) and (2) anionic: sodi-
um dodecyl sulfate (SDS). An aqueous solution containing
nickel sulfate precursor and potassium hydroxide buffer
was used to grow the samples. The effect of organic
surfactants on its structural, morphological, wettability,
optical, electrochromic, and in situ colorimetry were
studied using X-ray diffraction, scanning electron micros-
copy, contact angle, FT-IR spectroscopy, optical transmit-
tance, cyclic voltammetry, and CIE system of colorimetry.
X-ray diffraction patterns show that the films are polycrys-
talline, consisting of NiO cubic phase. A nanoporous
structure with pore diameter of about 150–200 nm was
observed for pure NiO. The films deposited with the aid of
organic surfactants exhibits various surface morphological
feature. PVP-mediated NiO thin film shows noodle-like
morphology with well-defined surface area whereas, an
ordered pore structure composed of channels of uniform
diameter of about 60–80 nm was observed for PEG. A
compact and smooth surface with nanoporous structure
stem from SDS helps for improved electrochromic perfor-
mance compared with that of NiO deposits from surfactant-
free solution. Wetting behavior shows, transformation from

hydrophilic to superhydrophilic nature of NiO thin films
deposited with organic surfactant, which helps for much
more paths for electrolyte access. The surfactant-mediated
NiO produce high color/bleach transmittance difference up
to 57% at 630 nm. On oxidation of NiO/SDS, the CIELAB
1931 2° color space coordinates show the transition from
colorless to the deep brown state (L*=84.41, a*=−0.33,
b*=4.41, and L*=43.78, a*=7.15, b*=13.69), with steady
decrease in relative luminance. The highest coloration
efficiency of 54 cm2 C−1 with an excellent reversibility of
97% was observed for NiO/SDS thin films.
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Introduction

Electrochromism is the process by which a material can
exhibit a reversible and persistent color change upon
insertion/extraction of Li+ or OH− ions with applied
potential [1]. In recent years, nickel oxide (NiO) thin
films have received a great interest due to its applications
in diverse fields, such as large-scale optical switching
glazing, electronic information display [2], gas sensors [3],
tandem dye-sensitized solar cells [4], magnetic materials
[5], transparent organic light emitting diode [6], and
catalysis [7].

Surface modification is an important area of study in
modern electrochemistry, and any research carried out in
this direction will be of interest, especially due to the
several application possibilities of these electrodes [8].
Recently, nanostructured materials with various surface
morphologies attracted great deal of attention in nanotech-
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nology for an intended application [9–13]. The synthesis of
varieties of surface morphologies form ordered superstruc-
tures or complex functional architectures offer great opportu-
nities to explore their novel properties for fabrication of
various nano-devices, research, and development across the
globe concentrating on invention of various nanostructures
[14, 15]. The amphiphilic nature of organic surfactants helps
in modifying the surface morphology of the deposit owing to
their concentration-dependent specific activity during elec-
trodeposition [16]. The specific activity of the surfactants is
generally understood in terms of adsorption at the cathode
surface during deposition and depends on the critical micelle
concentration of the surfactant molecules which forms the
bilayer or multilayer at the electrode interface [17]. Effect of
organic surfactants on metals such as Tl(I), Pb(II), Cd(II), Cu
(I1), and In(II1) [18], as well as oxide including ZnO [16],
WO3 [19], and NiO [20–22] have been investigated
extensively during past decade.

Plethora of chemical and physical techniques have been
used to deposit NiO thin films, such as chemical bath
deposition [23], sol–gel technique [24], spray pyrolysis
[25], hydrothermal synthesis [26], electrodeposition [27],
chemical vapor deposition [28], pulse laser deposition [29],
electron beam evaporation technique [30], RF magnetron
sputtering [31], and DC magnetron sputtering [32]. Among
all methods mentioned above, electrodeposition of NiO thin
films for EC devices has been sparse, although this
technique allows tailoring the properties of NiO thin films
by adjusting the deposition parameters.

In this paper, we have systematically demonstrated the
effect of organic surfactants, such as anionic and non-ionic
surfactants on the electrochemical deposition of NiO and
the resulting changes on the structural, morphological,
wettability, and colorimetric analysis of the electrodeposits.
Anionic and non-ionic surfactants have been used to
investigate the effect of the charge of head groups on the
electrodeposition process. Our investigation from colori-
metric analysis shows that the NiO thin films incorporating
the organic surfactants exhibits better kinetics of coloration
and bleaching in comparison to pure NiO thin films
electrodeposits. However, there are only few investigations
on the colorimetric analysis of inorganic metal oxides. The
main object of this paper is to elucidate the effect of organic
surfactant on the microstructure properties NiO thin films
and on coloration and bleaching kinetics of electrodeposits.

Experimental

Synthesis

NiO thin films have been synthesized using two different
electrochemical routes: (1) without organic surfactant and

(2) with organic surfactants. In the first route, 0.5 M
NiSO4

.6H2O (Loba Chemie, 99%) aqueous solution and
1 M KOH was used as buffer in order to increase the pH of
the final solution. The thin films of NiO were obtained by
potentiostatic electrodeposition at 1V (vs SCE) in an
aqueous solution with pH of 7.4 and deposited for 30 min
in a three-electrode electrochemical cell comprising an
indium-doped tin oxide (ITO; Kintec corp. Ltd, Hong
Kong) coated conducting glass substrate with a sheet
resistance of 20–25Ω cm−2 were used as working electrode,
a platinum wire as a counter electrode, and a saturated
calomel electrode (SCE) as a reference electrode.

Furthermore, to study the effect of organic surfactants on
the growth of NiO deposits and their properties, various
organic surfactants, such as polyvinylpyrrolidone (PVP,
130,000 g mol−1, Alfa Aesar), polyethylene glycol (PEG,
20,000 g mol−1, Himedia), and sodium dodecyl sulfate
(SDS, 288.33 g mol−1, Sd fine, 99.5%) were added
separately in a definite proportion. The concentration of
organic surfactants (polymers) was kept constant at 0.5 wt.
% in the final solution. All the experiments were performed
in quiescent solution at room temperature. Furthermore,
these films were annealed at 300 °C in air for 90 min. Prior
to deposition, ITOs were cleaned with ultrasonic vibrations
in acetone and de-ionized water, respectively. The film
prepared by using different organic surfactants, such as
PVP, PEG, and SDS abbreviated as NiO/PVP, NiO/PEG,
NiO/SDS, and those without organic surfactant are denoted
NiO.

Characterizations

The structural properties of the films were studied by X-ray
diffraction (Philips, PW 3710, Almelo, Holland, operated at
40 kV, 25 mA with Cr Kα radiation, λ=2.2897 Å). The
infrared (IR) spectrum of powder collected from all NiO
samples were recorded using Perkin–Elmer IR spectropho-
tometer (model-100) in the spectral range of 400–
4,000 cm−1. The pellets were prepared by mixing KBr
with NiO powder collected by scratching film from glass
substrates, in the ratio 300:1 and then pressing the powder
between two pieces of polished steel. The surface mor-
phology of the films was examined by scanning electron
microscopy (SEM; Model JEOL-JSM-6360, Japan, operat-
ed at 20 kV) with a thin layer of gold sputter coated prior to
analyses. The optical transmittance spectra of fully colored
and fully bleached states were measured over the range
of 350–1,000 nm using an UV-vis spectrophotometer
(Shimadzu, model: UV-1800, Japan). All the electrochro-
mic measurements were performed in an electrolyte (1 M
KOH) in a conventional three-electrode arrangement
comprising platinum wire as the counter electrode and
SCE serving as the reference electrode using electrochem-
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ical quartz crystal measurements (model-CHI-400A) made
by CH Instruments, USA.

Colorimetric determinations were done with the help of
Shimadzu color analysis software by analyzing the trans-
mittance spectra of color/bleach state to evaluate the
L*a*b* and Yxy coordinate values. These obtained values
were used as reference data in order to get the observed
color in reduced and oxidized state for all samples from
online color analysis software with 1931 2° observer and
D-65 illuminant proposed by CIE Yxy and L*a*b*
coordinate.

Results and discussion

Formation of NiO thin films

Potentiostatic deposition in a transition metal bath leads to
the formation of oxide or hydroxide depending upon the
stability of resultant deposits. In the case of electrodeposi-
tion of an aqueous solution of nickel sulfate, the oxidation
of Ni2+ to Ni3+ leads to formation of unstable nickel
oxyhydroxide which is then finally deposited in the form of
Ni(OH)2 on the electrode surface and annealing at 300 °C
in air for 90 min leads to the formation of NiO. The overall
reaction mechanism can be schematically represented as
[33]. NiO(OH)

Ni2+ e
Ni3+ OH

NiO(OH)                 Ni(OH)2

ð1Þ

Ni OHð Þ2������!Δ�300�C NiOþ H2O " ð2Þ
Upon the addition of anionic surfactants (for example,

SDS) into an inorganic electrolyte solution (in this
context, designated as NiSO4

.6H2O), the electrostatic
interaction results in the complexation of Ni2+/SDS,
comprised of metal cations and anionic head groups of
surfactants [34].

X-ray diffraction

Figure 1a–d shows the X-ray patterns of electrodeposited
NiO thin film on ITO-coated conducting glass substrates
with and without surfactants, annealed at 300 °C for 90 min
in an ambient air. All the films are polycrystalline and can
be characterized by a cubic structure of NiO with the
predominant peak at 43.27° corresponding to the (200)
preferred orientation. The XRD patterns of film made with
and without surfactants showed no difference. This sug-
gests that the organic surfactants do not affect the
crystallographic orientation of NiO. All the peaks in the

patterns are indexed according to JCPDS data card of NiO
(78-0643).

FT-IR analyses

The IR transmittance spectra of NiO, NiO/PVP, NiO/PEG,
and NiO/SDS thin films are shown in Fig. 2a–d. The band
at 470 cm−1 is due to NiO and assigned to Ni–O interaction
[35]. The splitting of the peaks in the spectral region of
988–1,150 cm−1 and the shoulder at 636 cm−1 belong to
free sulfate ions [23, 36]. The vibrations due to carboxyl
group are obtained in the range of 1,371–1,463 cm−1. The
bands centered at 1,630 and 1,746 cm−1 are the character-
istics of bending vibration of water and the carbonate ions
[37]. The peaks in the spectral region of 2,847–2,923 cm−1

for all the samples were attributed to alkyl group [16]. The
bands at 3,200–3,600 cm−1 correspond to the O–H mode of
vibration, i.e., due to the hydroxyl group. These observa-
tions indicate that the samples are free from organic
surfactants.

Morphological study

Figure 3a shows a SEM image of NiO thin film deposited
on ITO-coated glass substrate for 30 min without any
surfactant. These reveal that the interconnected nano-flakes
network with pore diameter of about 150–200 nm with
well-defined cracks. Figure 3b shows a SEM image of
PVP-mediated NiO thin film exhibiting noodle-like struc-
ture without cracks. Figure 3c shows the SEM image of
NiO thin film deposited using PEG. It possesses a well-

Fig. 1 XRD patterns for a NiO, b NiO/PVP, c NiO/PEG, and d
NiO/SDS thin films deposited onto ITO-coated conducting glass
substrates, annealed at 300 °C for 90 min in ambient air
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ordered pore network composed of channels of uniform
diameter of about 60–80 nm. Figure 3d shows the SDS-
mediated NiO thin film which exhibits a smooth and highly
nanoporous network. Interestingly, the films deposited
with the aid of surfactant have smaller pores as compared
with that of the film deposited without surfactant. This
suggests that the electrochemically accessible surface
area must be greater than samples grown without
surfactant. This high surface area coupled with nano-
porosity provides easy path for electrolyte penetration
which is helpful for the improvement in EC performance.
Figure 4a–d shows the cross-section images of NiO,
NiO/PVP, NiO/PEG, and NiO/SDS having thickness of
202, 163, 176, and 229 nm, respectively.

Contact angle measurement

The wettability of solid surfaces with liquids is governed by
both their chemical modifications and geometrical struc-
tures of the surface. The result of contact angle for NiO thin
film with and without surfactants is shown in Fig. 5a–d. As
seen from SEM images (Fig. 3a), due to the entrapment of
air in hollow porous structure of NiO thin film, liquid air
interface has been formed inhibiting electrolyte penetration
into film structure and result in contact angle of about
64.28° for pure NiO thin film. However, as anticipated, the
introduction of the surfactants (PVP, PEG, SDS) trans-
formed it from hydrophilic to superhydrophilic nature with
contact angle of about 12.64°, 11.34°, and 10° that causes
large amount of electrolyte access into the film structure
and subsequent positive impact on their electrochromic

performance. This is due to most commonly encountered
amphiphilic surfactants (SDS) consist of a hydrophobic tail
group attached to a hydrophilic head group. It is energet-
ically preferential for the surfactant molecules to migrate to
the fluid interface or to the substrate where they can play a
crucial role in either altering the wettability of the substrate
by reducing surface tension of the free surface [37].
Surfactants do affect the wetting property of the electro-
deposited NiO samples [38].

Optical absorption

Figure 6a–d shows plots of (αhν)2 as a function of the
photon energy (hν) for NiO thin films deposited onto ITO-
coated conducting glass substrates with the aid of various
surfactants. The optical absorption data were analyzed
using the following classical relation for near edge optical
absorption in semiconductor [1]

a ¼ a0
hv� Eg

� �n
hv

ð3Þ

where Eg is the optical energy gap between bottom of the
conduction band and top of the valence band, hν is the
photon energy, and n is a constant whose value is ½ for
direct transition and 2 for indirect transition. Figure 6a–d
implies direct band gap energy of the films from 2.90 to
3.22 eV, which is attributed to the increase in absorbance of
films with increase in film thickness of the resultant
deposits that causes large number of atoms available for
absorption of photon energy and similar band gap narrow-
ing effect has been reported by other authors [20, 39, 40].
The inset of Fig. 6 shows the spectral behavior of
absorbance coefficient (α) vs wavelength for NiO, NiO/PVP,
NiO/PEG, and NiO/SDS.

Electrochromic properties of NiO thin films

Cyclic voltammetry

The cyclic voltammograms (CVs) of the NiO thin films were
recorded at a scan rate of 50 mV s−1 in 1 M KOH electrolyte
with linear potential sweep between 1.4 to −1 V versus SCE
after five cycles (in Fig. 7a–d). The cathodic and anodic
peaks observed at −0.5 V and +0.76 are attributed to the
redox reaction involving Ni2+/Ni3+ transformation. The
coloration and bleaching of the film is associated with the
deintercalation and intercalation of OH− ions or extraction of
H± ions and the redox equation. A simplified reduction
scheme implying the gradual change in the optical density
upon intercalation/deintercalation of ions in electrochromic
NiO film is represented by following equations [41].

 NiO + xOH                  NiOOH   + xe- ----------------- ð4Þ
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Fig. 2 FT-IR spectra of electrochemically deposited a NiO, b
NiO/PVP, c NiO/PEG, and d NiO/SDS thin films, annealed at 300 °C
for 90 min in ambient air
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During the cathodic scan, the reduction of Ni3+ to Ni2+ leads
to bleaching of the film (cathodic peak at −0.5 V). In the
reverse anodic scan, the oxidation of Ni2+ to Ni3+ causes the
coloration of the film (anodic peak at 0.76 V). The
corresponding digital photographs at different potentials have
been shown in Fig. 8a–d. The general features of the CVs with
and without surfactants are similar except the magnitude of the
anodic and cathodic peak current density which is similar to
the NiO deposited by sol–gel and potentiostatic electrodepo-
sition techniques [27, 42]. The anodic and cathodic peak
current density of NiO/SDS thin film are 3.65 and
4.2 mA cm−2, respectively. These values are higher than those
obtained for NiO, NiO/PEG, and NiO/PVP. This is mainly due
to the electrochemically accessible high surface area of
NiO/SDS providing much more path for electrolyte penetra-
tion, as supported by contact angle measurements. Injection of
ions into theNiO film, two circumstances should be considered,
one being the movement of ions in the film and the other being
the crossover of ions at electrolyte/film interface.

Chronocoulometry

Chronocoulometry (CC) gives quantitative information
about the number of protons/ions intercalated or dein-
tercalated on the application of a potential double step
during a known amount of time [43]. The reversibility is
then given by the ratio of the amount of charges
deintercalated to the charges intercalated, i.e., Qdi/Qi..
Figure 9 shows the CC plot of the NiO, Ni/PVP, NiO/PEG,
and NiO/SDS thin films at a potential step of +1.4
to −1 V versus SCE in colored and bleached states for
10 s. The reversibility of all the samples were determined
and listed in Table 1. The reversibility of NiO/SDS thin
film was estimated to be 97%. As expected from the
results of the contact angle and SEM images, the
hydrophilic nature and a well-compact, smooth surface
with nanoporous structure of the NiO/PVP, NiO/PEG, and
NiO/SDS thin films show marginal enhancement in ion
intercalation and deintercalation processes.

Fig. 3 Typical SEM images of a NiO, b NiO/PVP, c NiO/PEG, and d NiO/SDS thin films
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Fig. 4 Cross-section images of a NiO, b NiO/PVP, c NiO/PEG, and d NiO/SDS thin films

Fig. 5 Optical images of water
droplets placed on a NiO, b
NiO/PVP, c NiO/PEG and d
NiO/SDS thin films
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Optical transmittance modulations and coloration
efficiency

The optical transmission spectra for NiO, NiO/PEG,
NiO/PVP, and NiO/SDS thin films in its colored and
bleached states are shown in Fig. 10a–d. The optical
transmittance difference (ΔT) in the colored and bleached
states at 630 nm are found to be 31%, 32%, 38%, and
58%, for NiO, NiO/PVP, NiO/PEG, and NiO/SDS,
respectively. The highest ΔT (57%) was observed for

NiO/SDS thin film. The optical density difference and
coloration efficiency (CE) of all the samples at 630 nm
were calculated using relation Eqs. 5 and 6 and listed in
Table 1.

$OD ¼ ln
Tb
Tc

� �
1¼630nm

ð5Þ

CE ¼ $OD

Qi

� �
1¼630nm

ð6Þ

where Tb and Tc are the transmittance of the films in the
bleached and colored state at λ=630 nm. CE is the
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Table 1 Parameters obtained from chronocoulometry and optical studies

Name Thickness (nm) Reversibility (%) Transmittance (Tb)
(%) at 630 nm

Transmittance (Tc)
(%) at 630 nm

ΔT (%) Optical density
(ΔOD)

Coloration efficiency
(cm2 C−1)

NiO 202 85 69 38 31 0.58 25

NiO/PVP 163 92 59 27 32 0.78 39

NiO/PEG 176 98 66 28 38 0.85 44

NiO/SDS 229 97 83 25 58 1.16 54
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Fig. 10 Optical transmission spectra of a NiO, b NiO/PVP, c NiO/PEG, and d NiO/SDS thin films in their colored and bleached states after
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relation between ΔOD and Qi and is approximately
proportional to each other. The increase in ΔOD from
pure NiO to NiO/SDS thin film leads to an increase in CE
of about 54 cm2 C-1 for NiO/SDS, which is higher than
the reported [23, 28].

Colorimetric analyses

The colors of electrochemically deposited NiO, NiO/PEG,
NiO/PVP, and NiO/SDS thin films were determined by
performing colorimetric measurements [44] and were used
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Fig. 11 a Relative luminance vs applied potential, for NiO, NiO/PVP,
NiO/PEG, and NiO/SDS in their color/bleach state, the potential of −1 V
was applied for bleaching and +1.4 V for coloring; (dashed horizontal
lines indicate difference of relative luminance in their colored and

bleached state for NiO/SDS), b CIE 1931 chromaticity diagram
showing the (x,y) color coordinates for NiO, NiO/PVP, NiO/PEG, and
NiO/SDS in their color/bleach state.(dashed vertical lines indicate
difference of (x,y) in their colored and bleached state for NiO/SDS)
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as the quantitative scale to define the colors. The attributes
of color, hue-a (its position between red and green, where
negative value tends toward green and positive value tends
toward red), saturation-b (its position in between blue and
yellow, where negative value tends toward blue and
positive value tends toward yellow) and lightness-L (where
0 is black and 100 is white) [45], were determined by
analyzing the transmittance spectra of colored and bleach
states after electrochemical polarization at +1.4 V (oxi-
dized) and −1 V (reduced) state, respectively. In the CIE
1931 Yxy color space, the tristimulus value Y is defined as a
measure of the brightness or luminance of the color [46] as
shown in Fig. 11a. It shows the relative luminance (%Y)
versus applied voltage for NiO, NiO/PEG, NiO/PVP, and
NiO/SDS thin films in its colored and bleached state. It is
observed that relative luminance (%Y) changes from 13%
(colored) indicating deep brown to 65% (bleached) indicat-
ing colorlessness of NiO/SDS thin film, which is higher
than that of NiO, NiO/PEG, and NiO/PVP. A two-
dimensional xy representation, known as the chromaticity
diagram (Fig. 11b) is utilized, in which x and y are
calculated from the tristimulus values. As the potential is
switched from −1 to 1.4 V vs SCE, a large change in the xy
coordinates occurs as the color abruptly changes from
highly transmissive (bleached) state to deep brown (col-
ored) state for NiO/SDS thin film as compared with that of
NiO, NiO/PEG, and NiO/PVP, as clearly evidenced from
Fig. 8a–d. From CIE coordinates, lightness contrast was
calculated to identify darkness/brightness corresponding to
applied potential. Figure 12a shows the lightness of pure
NiO, NiO/PEG, NiO/PVP, and NiO/SDS thin films in their
colored and bleached state upon application of potential
step of −1 to +1.4 V and corresponding lightness contrast
were found to be 1.23, 1.30, 1.56, and 1.92. The highest
lightness contrast (1.92) was observed for NiO/SDS thin
film with corresponding color/bleach lightness difference of
about 40.63%. On the basis of xy coordinates shown in
Fig. 12b, anodic coloration (deep brown) and cathodic
bleaching (colorlessness) of NiO/SDS is stronger as
compared with that of NiO, NiO/PEG, and NiO/PVP. The
color difference (ΔE*) of NiO, NiO/PEG, NiO/PVP, and
NiO/SDS thin films were calculated using the following
relation [47].

$E
» ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$L2 þ $a2 þ $b2

p
ð7Þ

where ΔL, Δa, and Δb represent the difference between
color/bleach states. The calculated color/bleach difference,
ΔE* for NiO/SDS thin film is found to be 42.69 which is
higher than other samples.

Conclusions

Nanostructured NiO thin films with different morphologies
were deposited by potentiostatic electrodeposition in the
presence of various surfactants such as PVP, PEG, and SDS
in nickel sulfate bath onto ITO-coated conducting glass
substrate. The organic surfactants play a crucial role in
tuning the surface morphological features, which is suitable
for an intended application. SEM micrograph reveals that
the well-compact, smooth surface with nanoporous struc-
ture made up of NiO/SDS thin film provides an easy path
for electrolyte access into the film structure, which helps in
improvement of EC performance. The wetting property of
the NiO thin films with the aid of various surfactants is
dictated by its surface structure, varying from slightly
hydrophilic surface for pure NiO to superhydrophilic
surface for NiO/SDS. The in situ colorimetric analysis
method discussed in this paper is a significant step in the
direction of precise measurement of the hue, saturation,
and luminance of color states and allows the changes in
these properties to be carefully monitored on redox
(color/bleach) switching between electrochromic color
states of pure and surfactants assisted NiO thin films.
The ΔT of the NiO thin film in their colored and bleached
state boosts by SDS additives with better electrochemical
reversibility and coloration efficiency (97% and 54 cm2 C−1)
due to formation of favorable microstructure coupled with
superhydrophilicity.
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